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Abstract 

An electron-density function with a region of local 
non-crystallographic symmetry is sampled with a 
movable symmetry grid. This provides a means of 
optimizing the parameters of the locally symmetric 
region as well as of idealizing its electron density 
through symmetry averaging. An iterative procedure 
for phase refinement uses local symmetry averaging 
and Fourier inversion, with selective reciprocal-space 
damping of unmodified function regions, and correction 
for solvent scattering. Application to the crystal- 
structure analysis of STNV, with 60-fold icosahedral 
non-crystallographic symmetry, shows good con- 
vergence and capability of phase extension from 10 to 4 
A resolution. 

Introduction 

Methods for determining the nature, directions and 
point of intersection of the local symmetry axes in 
regions of non-crystallographic symmetry are well 
established (Rossmann, 1972). This knowledge has been 
used to improve the interpretability of electron-density 
maps and as an aid in locating heavy atoms. 

However, the most powerful direct-space use of such 
local symmetry information is the generation of phases 
by Fourier inversion of locally symmetry-averaged 
electron-density maps, and the iterative phase refine- 
ment of such maps. Programs for accomplishing this 
have been developed, notably by Bricogne (1976), who 
has also discussed the optimization and limitations of 
the process, as well as earlier work in this field. 
Independently, Johnson (1978) has developed a similar 
procedure of iterative direct-space symmetry averaging 
and Fourier inversion. 

These methods have played a central part in the 
solution and refinement of the three largest crystallo- 
graphic problems to reach interpretable resolution, 
namely the protein disk of Tobacco Mosaic Virus 
(Bloomer, Champness, Bricogne, Staden & Klug, 
1978), Tomato Bushy Stunt Virus (Harrison, Olson, 
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Sch/itt, Winkler & Bricogne, 1978) and Southern Bean 
Mosaic Virus (Suck, Rayment, Johnson & Rossmann, 
1978; Abad-Zapatero, Abdel-Meguid, Johnson, Leslie, 
Rayment, Rossmann, Suck & Tsukihara, 1980). 

In these applications the phase information derived 
from non-crystallographic-symmetry averaging has 
been used in combination with multiple-isomorphous- 
replacement data, or to improve the phases of maps 
initially phased by multiple-isomorphous-replacement 
methods. 

Argos, Ford & Rossmann (1975), working with the 
known structure of glyceraldehyde-3-phosphate 
dehydrogenase, with non-crystallographic molecular 
symmetry 222, demonstrated the potential value of the 
method in phase extension, i.e. the determination of ab 
initio phases in a resolution range beyond that for 
which phase information is initially available. Johnson, 
Akimoto, Suck, Rayment & Rossmann (1976) applied 
the method to Southern Bean Mosaic Virus, extending 
initial 35 A phases based on a spherical-particle model 
to 22.5 A by icosahedral averaging. 

Satellite Tobacco Necrosis Virus (STNV) is a small 
icosahedral virus of molecular weight 1.7 million. It 
crystallizes in the monoclinic space group C2 with four 
molecules per cell. The crystallographic asymmetric 
unit is an entire virus particle, thus the full 60-fold 
symmetry of the icosahedral point group 532 is 
non-crystallographic (Strandberg, Vaara, Unge, Frid- 
borg, Kannan, Borell, Lentz & Nordman, 1978; 
Strandberg, Unge, Liljas, Vaara, Kannan, Fridborg, 
Borell & Nordman, 1979; Unge, Liljas, Strandberg, 
Vaara, Kannan, Fridborg, Nordman & Lentz, 1980). 

This paper describes a set of computational pro- 
cedures for utilizing non-crystallographic symmetry, 
developed in the course of the structure analysis of 
STNV. The programs are derived from Patterson 
search routines previously in use in this laboratory 
(Nordman, 1966; Schilling, 1970), and employ func- 
tion-handling subroutines directly adapted from the 
latter. The programs also have much in common with 
those of Bricogne (1976) and Johnson (1978). 

Another purpose of this paper is to account for 
experiences gained in the use of these methods in phase 
extension with native-only STNV data. 

© 1980 International Union of Crystallography 



748 DETECTION OF NON-CRYSTALLOGRAPHIC SYMMETRY 

Function storage and retrieval Symmetry search and optimization 

The storage of the electron-density function in the 
computer memory, and the retrieval of interpolated 
values are done in a manner identical to that used in 
Patterson search applications (Schilling, 1970). The 
function is sampled on a crystallographic, i.e. fractional 
unit-cell coordinate, grid, covering one asymmetric 
unit. The function values are integers in the range 0 to 
2 n - 1, where n, the number of bits per value, may be 
chosen according to the accuracy desired and the 
available core storage. In the work described here n = 8 
was used. This choice is particularly convenient on 
IBM-type machines, since it allows the function to be 
stored as a three-dimensional array of individually 
addressable logical variables. On other machines 
several values would be packed into one word. In the 
following we refer to the array of stored function values 
as the map. The map covers one crystallographic 
asymmetric unit. 

A function value at an arbitrary point in the unit cell 
is retrieved by interpolation in the map. A space- 
group-dependent section in the map-handling sub- 
routine first moves the point into the asymmetric unit 
covered by the map. The desired function value is then 
evaluated by one of several interpolation schemes 
available in the subroutine. 

For most purposes for which this function-storage 
and -retrieval system has been used, an eight-point 
interpolation scheme has been employed. Here the eight 
map values at the corners of the 'box' surrounding the 
function point are used in a manner so as to give a 
continuous representation of the interpolated function. 
Let P000, P~00, P0~0, ..., P11~ be the tabulated map values 
at the eight corners of the box, and let Po0o be the corner 
nearest the point at which the function is to be 
evaluated. If u, v and w are the local coordinates of this 
point expressed in fractions of the box edges and 
referred to the P000 corner as origin, it follows that 0 < 
u(v, w) <_ 0.5, i.e. u(v, w) are taken in the positive or 
negative direction of the crystal coordinates x ( y ,  z) 
depending on the octant of the box in which the point 
lies. The interpolated function value is expressed as an 
eight-term polynomial in u, v and w, where the 
coefficients of the respective powers are: 

1 P000; 
u --Pooo + Ploo; 
v --Pooo + Polo; 
w --Pooo + POOl;  

uv Pooo -- Ploo -- Poto + Pl~o; 
vw Pooo -- Polo -- Poo~ + Po11; 
uw Pooo -- P~oo -- Pool + P~o~ ; 

uvw --Pooo + Ptoo + Polo + Pool - -  P11o  - -  P o l l  - -  P l o l  

+Pill. 

More rapidly computable approximations, not used in 
the STNV work, employ only the first four, or the first 
one, of these eight terms. 

The routine described in the preceding section lends 
itself to several applications. One is the calculation of 
arbitrary sections, plane or otherwise, through an 
electron-density function. 

Another is the previously mentioned search of 
Patterson functions for sets of interatomic vectors 
corresponding to some structural fragment known to be 
present in the structure (Nordman, 1966; Schilling, 
1970). Similarly, searches of poorly phased or incom- 
pletely resolved electron-density maps for sets of 
atomic position vectors have been found useful. The 
criterion of fit in all these searches is some function of 
the vector or electron densities at the vector points, 
expressing the degree to which all search vectors fall on 
satisfactorily high ground in the Patterson or electron- 
density function. 

In the presence of local non-crystallographic 
symmetry,  a closely related calculation can be used to 
find the directions of local symmetry axes or planes 
and, where applicable, the point of intersection of such 
axes or planes. In this calculation the sampling of the 
stored function is done with a symmetry  grid instead of 
the above-mentioned search vectors. 

The symmetry grid is a set of points arranged so as 
to display the exact symmetry of the point group in 
question. Let the order of the local non-crystallo- 
graphic point group be N s. The symmetry grid then 
consists of Ns (non-crystallographic) asymmetric units, 
which we shall call subunits. Each subunit is delimited 
by a set of planes, through the point-group origin, 
which mark the inter-subunit boundaries. An outer and, 
if applicable, an inner boundary describe the outer 
(inner) limits of the non-crystaUographically symmetric 
region. The symmetry grid is similar to the inter- 
mediate Cartesian grid described by Bricogne (1976) 
as an alternative method of symmetry averaging. 

In the case of the icosahedral point group 532 N s 
equals 60, and the subunit of the symmetry grid may be 
taken as the triangular wedge having as its edges one 
threefold axis and two adjacent fivefold axes. The 
relationship of this grid subunit to the shape of the 
chemical subunit in the viral coat is immaterial. 

The points of the symmetry grid are laid out so as to 
fill one grid subunit in an approximately uniform 
manner. The grid-generating subroutine accepts a 
specifiable step parameter expressing the maximum 
distance between adjacent grid points. Subject to this 
restraint the subunit is filled with the minimum number 
of grid points, N t. The value of N i is returned to the 
calling program, and the Cartesian coordinates of the 
N t points are stored. The subunit in question is taken as 
subunit 1. 

A region of the function presumed to have local 
non-crystallographic symmetry is sampled by rotating 
and translating the symmetry grid into the region. 
Function values at the points of the symmetry grid are 
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evaluated by interpolation in the map. Let p(xis ) be the 
function value at the location of the ith point of 
symmetry-grid subunit s. 

We now evaluate 

where 

o'~= (1/N~) y [p(xD-hi] 2, (1) 
$ = 1  

Pt = (1/N~) y p(xi~ ). (2) 
S = I  

A low value of a~ indicates a high degree of symmetry 
at the symmetry grid points X~l, xi2 . . . .  , XIN s. The sum 

Nt 
° '2= Z tr2 (3) 

i = 1  

is a measure of the presence of symmetry of the point 
group in question in the entire region sampled by the 
symmetry grid. A low (or zero) value of o 2 represents 
high (or perfect) symmetry. 

Only the coordinates of the N t points in subunit 1 of 
the symmetry grid need be explicitly stored. Having 
rotated these points through the Eulerian angles repre- 
senting the orientation of the particle in the cell, the 
coordinates of each are multiplied, in turn, by N~ 
matrices of the type CR(s), where R(s) first rotates sub- 
unit 1 into subunit s, and C transforms the Cartesian 
coordinates to fractional crystal coordinates. Thus the 
transformation of the Cartesian coordinates of grid 
point i in grid subunit 1 into fractional coordinates of 
point i in subunit s is accomplished with one matrix 
multiplication. 

To refine the coordinates of the center of the 
symmetric region, or the spatial orientation of its 
symmetry elements, small adjustments are made in 
these parameters so as to minimize a z of (3). The 
procedure may be employed for purposes similar to the 
rotation function (Rossmann & Blow, 1962) by placing 
the symmetry-grid center at the origin of the Patterson 
function, and performing a systematic, in general 
three-dimensional, search of Euler-angle space over a 
region determined by the (angular) size of the subunit 
in the point group in question. 

A third application of this sampling procedure 
involves a display of tr~ (equation 1) as a function of x i, 
the position of the point i in the subunit. This procedure 
can be helpful in identifying the boundary of a 
non-crystallographically symmetric region. Points out- 
side the symmetric region have o 3 values which are no 
lower than those of N~ randomly chosen points in the 
function. 

Symmetry averaging 

By 'symmetry averaging' we mean the idealization of a 
local approximate (non-crystallographic) symmetry 
present in a given region of the unit cell. 

The rotatable and translatable symmetry grid, 
described in the preceding section, lends itself to a 
simple and computationally economical procedure for 
symmetry averaging. We assume that the symmetry 
grid has been positioned so as to minimize the sum (3). 
In the symmetry averaging process the map values are 
modified in such a way as to make (3) vanish, or nearly 
SO. 

The computation consists of three steps, each carried 
out in the order of the points of the symmetry grid, with 
the index s changing fastest. 

In the first step the coordinates of the map point m°s 
nearest the current grid point Xis are stored, as are flags 
identifying the three second-nearest map points x mis, m~s 
and m~. The coordinates of these second-nearest points 
differ from the 'nearest' map point by _+ 1 map step. The 
value ofp(xts), the value of 

Ap °, = p ( m ~ ) -  p(xi, ) 

and the three second-nearest values 

A~s = p(m~,)-  P(Xis ), 

and analogously ,4p~ and A~s, are also stored. When s 
equals N s, f)i (equation 2) is evaluated and written on an 
external file along with the N,  sets of m ° coordinates, 
second-nearest map-point flags and Api ~ values. The 
values of p(Xts) are not needed. This operation is 
repeated for all values of i. 

In the second step the external file is read. For each i, 
the N s quantities /5 i + Api° s are inserted at their 
respective 'nearest' map points mrs,° replacing the 
previous values p(m°~) at these points. When the 

0 substitution is made at map point mrs, a one-bit flag is 
set to 1 at the location corresponding to m°t in an 
initially zeroed bit array having one bit for each 
element in the map array. 

It should be noted that there is no guarantee that all 
map points within the region covered by the symmetry 
grid will have been substituted at the end of this step. 
This would be achieved only if the symmetry grid step 
were chosen sufficiently small in relation to the interval 
between adjacent map points. In that case many map 
points would be substituted twice, or more, since the 
likelihood that a given map point would be the nearest 
one to several grid points increases with the density of 
the grid. Such multiple substitution would be wasteful, 
but otherwise harmless. 

An efficient compromise involves substitution of the 
second-nearest map-point data. This is done in the third 
step. The external file is read again. This time the 3 N  s 
quantities/5 i + Afft s (and similarly for y and z) are used. 
However, substitution at map points m~ (and y, z) is 
made only if the bit-array entry indicates that the map 
point has not already been substituted, in step 2. Thus 
the 'second-nearest' data are invoked only at those map 
points which would otherwise have been missed. 
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The entire calculation is proportional to N s N t. Since 
N s is fixed by the point-group symmetry, the dis- 
posable parameter is N~, the number of points in the 
subunit of the symmetry grid, inversely proportional to 
the third power of the grid step. The proportion of first- 
and second-nearest substitutions depends on the ratio 
of this grid step to the map point interval. As an 
example, in the symmetry averaging of the STNV 
map at 4 A resolution it was found that a grid step of 
1.05 A and a map point interval of 1.30 A resulted in 
0.978 x 106 nearest and 0.075 x 106 second-nearest 
substitutions. 

In the STNV symmetry averaging at 4.0 A 
resolution, it was found advantageous to include three 
additional quadratic terms in the polynomial for the 
interpolated function. If the function value given by the 
eight-point interpolation scheme is denoted pS, then 

/911 : / 9  8 -t- kAp, 

where 

Ap = (P000- 0"5P100 - 0"5pi00) u(1 - u) 

+ (Po00 -- 0"5P010 -- 0"5P0ro) v(1 -- v) 

+ (P000 -- 0"5P001 -- 0"5P00r) w(1 -- w) 

represents an eleven-point interpolated value based on 
the eight corners of the box, and the three points Pi00, 
Poi0 and P00i outside the box. The quantity k was treated 
as an adjustable parameter in the range 0 < k < 1. Its 
value was optimized by symmetry averaging a given 
map, and then evaluating the resulting symmetry 
(equation 3) using a symmetry grid rationally unrelated 
to the first. It was found that k = 0.4 produced the 
lowest a 2 (equation 3), and that this value was 
significantly lower than that produced by the eight- 
point interpolation, for which k = 0. 

Phase refinement and solvent correction with 
application to STNV 

In the structure analysis of STNV, a phase-refinement 
procedure was used, based on symmetry averaging of 
an F o electron-density synthesis followed by cal- 
culation of improved phases, by Fourier inversion, for 
input into the F o map of the next cycle. 

Given an F o map, the first step is to replace the 
function values at the 'background' points in the map 
array by their mean value. A background point is one 
which does not fall inside the outer envelope of any 
particle (or molecule) in the structure. A separate 
program generates a file containing the coordinates of 
all background points in the crystallographic asym- 
metric unit. The contents of this file depend on the 
center coordinates of the particle, and on the geometry 
of the outer envelope of the particle. The background 

file is updated each time the particle position or 
orientation is changed. 

The background boundary, or particle envelope, and 
the outer boundary of the symmetrization region are 
not necessarily identical. While the background boun- 
dary is chosen to reflect the best estimate of the particle 
envelope, the symmetrization boundary must be such 
as to ensure that no symmetrization regions of 
neighboring particles overlap. 

The next step in the phase-refinement cycle is the 
symmetry averaging, described in the preceding sec- 
tion. In the case of a virus, the central nucleic acid 
cannot be expected to exhibit the symmetry of the 
protein coat. Accordingly, an inner as well as an outer 
symmetrization boundary is used. At low resolution the 
assignment of the inner boundary is necessarily 
somewhat arbitrary. An approximate assignment of 
this boundary can be made by calculating the electron- 
density integral, as a function of radial distance from 
the particle center, and apportioning the nucleic acid 
and protein regions to correspond to the chemically 
known electron content of each region. In the case of 
STNV an apparent, non-spherical nucleic acid-protein 
interface began to emerge at about 6/~, resolution. The 
inner symmetrization boundary was successively 
revised as this interface became more clearly traceable. 

When the symmetry averaging has been completed, 
any map points within the particle envelopes, which 
have a value less than the averaged background value, 
are set to that value. 

In the next step the background-averaged and 
symmetrized map is Fourier inverted (Ten Eyck, 1973) 
to yield a set of 'calculated' structure factors, F c, to a 
specifiable upper limit in sin 0/L R values and other 
agreement indices between the levi values and the 
measured I Fol values are computed as functions of 
sin 0/2. The F o Fourier synthesis for the next phase- 
refinement cycle is computed with I Fol magnitudes and 
F c phases. Accidentally unrecorded reflections, i.e. 
reflections within the resolution limit whose I Fol values 
are unknown, are assigned the structure amplitude 
LFcl. 

The preceding outline is a somewhat simplified 
description of the phase-refinement cycle. Two ad- 
ditional steps in the computation are a solvent scatter- 
ing correction and a partial structure-factor damping 
feature. These steps are described in the following 
paragraphs. 

It is a common experience in macromolecular 
crystallography that I f c l / I f o l  for low-angle reflections 
tends to exceed unity, unless a correction is made for 
the contribution of the solvent to the Bragg intensities 
(Moews & Kretsinger, 1975). This behavior was 
clearly displayed by the uncorrected STNV data, with 
IFel/Igol -~ 3-4 for the lowest-angle reflections. 
Another symptom of solvent scattering was a tendency 
for a large fraction, about 25%, of the map points 
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within the particle envelope to have function values 
less than the background average, a physically 
unreasonable condition. 

The following procedure was used to correct 
approximately for the solvent scattering. A conversion 
factor relating the true electron density, in e A -a, to the 
map values above the background was calculated as 
the ratio of the electron content of the virus particle, 
taken as 9 x 105 electrons, to the volume integral of the 
map function above background. With this conversion 
factor the map value corresponding to the true electron 
density of water (0.335 e A -a) was calculated. An 
artificial 'electron density' map was constructed with 
the map equivalent of 0.335 e A -a inside the particle 
envelopes, and the background average value else- 
where. The Fourier inversion of this map yields, by 
Babinet's principle, an approximate set o f - F w ( h )  
values, where Fw(h) is the contribution of the inter- 
particle water to the Bragg reflection h. An essentially 
equivalent procedure, applicable at low resolution and 
not requiring accurate knowledge of the particle 
envelope, is to truncate the background-averaged and 
symmetrized electron-density function at the map 
equivalent of 0.335 e A -3, and invert this function to 
obtain the -Fw(h). 

If the Fc(h) is the structure factor calculated by 
inversion of the intact, symmetrized electron-density 
function, then Fc(h) + Fw(h) approximates the resultant 
of the particle and inter-particle solvent scattering. A 
temperature factor applied to the solvent component 
according to 

F~,wet(h) = Fc(h) + F w ( h ) e x p [ - B w ( s i n  0/2) 2] (4) 

has been found advantageous. The resulting solvent- 
corrected calculated structure factors show sharply 
improved agreement with the experimental I Fol values 
at low angles. The correction falls to insignificant 
values at about 7 A resolution. Here B w = 500 A 2 was 
chosen by trial to optimize R. 

The comparison between the I Fol values and the 
corrected, 'wet' I F~l values (equation 4) is done 
without resealing of either set. The resulting values of 

Af(h)= ]Fo(h )] --]fc, wet(h )] 
are added to the 'dry' IFc(h)l values to give a set of 
'dry' I Fol values. These magnitudes with the Fc(h) 
phases are used as input to the next phase-refinement 
cycle. 

Parallel refinement tests of STNV were run at 8 A 
resolution with and without the solvent correction. The 
results showed the essentially complete elimination of 
below-background regions within the particle envelope 
when the solvent correction was applied. Improved 
adherence to symmetry in the symmetrization region 
and constancy in the background region were also 
noted. For these reasons the solvent-corrected electron- 
density function was taken as the best available 

representation of the non-solvent structure for the 
purpose of symmetry averaging. 

In the phase-refinement cycle outlined above, three 
distinct treatments of map regions are applied. The 
background region is averaged, the symmetrization 
region is symmetry-averaged, and the remaining 
regions, if any, are left unmodified. The latter regions, if 
present, are the nucleic-acid region and, possibly, a thin 
layer between the particle envelope and the outer 
boundary of the symmetrization region. 

It is clear that the convergence of the phase 
refinement must be endangered if the unmodified region 
is large in relation to the modified regions, depending 
perhaps also on the symmetry number N s applicable in 
the symmetrization region. In trial runs with poor 
starting phases serious non-convergence was indeed 
occasionally experienced in the form of a build-up of 
excessive 'structural detail' in the unmodified regions. 

To insure against this behavior an additional, 
optionally invoked, Fourier inversion step was added to 
the phase refinement cycle. Following the Fourier 
inversion of the background-averaged and symmetry- 
averaged map, to yield Fc(h) values, the map values in 
the symmetrized region are set to the background 
value. Thus only the unmodified parts of the map have 
values greater than the background value. Fourier 
inversion of this map yields a set of structure-factor 
contributions Fn(h), the 'nucleic acid' components of 
the Fe(h). By Wilson statistics, it is now ascertained 
that the fall-off of I Fn(h)l with sin 2 0/22 is at least as 
steep as the fall-off of I ge(h)l. If this is not the case, an 
appropriate damping factor T = exp (-Bn sin 2 8/22) is 
applied to the 'nucleic acid' component of Fe(h) by 
adding the quantity (T--  1)Fn(h) to each Fe(h). 

In the normal course of phase refinement at 4 A 
resolution, the damping feature is not generally 
invoked. That is, the natural thermal fall-off of the 
nucleic-acid component is slightly steeper than that of 
the entire particle indicating, perhaps, some structural 
disorder in the nucleic-acid region. 

The behavior of the phase refinement in its initial 
stages is illustrated in Fig. 1. Electron-density sections 
are shown perpendicular to a particle three-fold axis. 
The leftmost map is the double-isomorphous-replace- 
ment map at 10/i, resolution computed with about 500 
low-angle reflections missing out of the total of 8600. 
The next map is the result of one cycle of background 
averaging, symmetry averaging and Fourier inversion. 
The third and fourth maps are the results of four and 
twelve cycles of phase refinement, respectively. 

A test of the convergence of this phase-refinement 
procedure at 10 A resolution is shown in Figs. 2 and 3. 
The map obtained after several cycles of refinement of 
the original DIR map is shown in Fig. 2(c). In order to 
obtain starting phases for the test, this map was 
spherically symmetry averaged over the entire particle 
and the resulting spherically symmetrical map was 



752 D E T E C T I O N  OF N O N - C R Y S T A L L O G R A P H I C  S Y M M E T R Y  

6 - ' ' 3 -  ~ 

, ~  ~ " ~  
~ ~ o V ~  

i 

, i 

~o. ~ ~ ? ~  }~?~ v . ~  ~g0 ] £ ~ ~ ~ ¢ ~ ~ .  ~c~ o~ o - ~ .  ~ - .  . . . . . .  

Fig. I. Electron-density sections, at 10 A resolution, perpendicular to a particle three-fold axis, through the particle center (top), and 40/k 
from the center (bottom). Pairs from left to right show the unaveraged DIR map and maps calculated after one, four and twelve cycles of 
phase refinement. 

, " ~  %- , 

(a) (b) (c) 

Fig. 2. Refinement of spherically averaged electron density at 10 A resolution. Maps are perpendicular to a particle three-fold axis, at 40 
(top) and 80/k (bottom) from the particle center, following (a) one and (b) seven cycles of phase refinement. The 'best' refined map at 10 
A, based on DIR phases and 12 cycles of phase refinement is shown in (c). 
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inverted. Figs. 2(a) and (b) show, respectively, the 
maps after one and seven cycles of phase refinement. 
Fig. 3 shows the phase differences between the refined 
(Fig. 2c) model on one hand and the spherical, 
spherical +7 cycles and spherical +8 cycles models on 
the other. From Figs. 2(a)-(c) and 3 it is clear that a 
phase refinement towards the refined model is taking 
place. 

Phase-extension experience with STNV 

Beginning with the 10 A set of phases from double 
isomorphous replacement, two series of phase refine- 
ment with stepwise increasing resolution were carried 
out. Each series used only native data; no phase 
information from heavy-atom derivatives beyond 10 A 
resolution was used. 

The first series used precession-camera data to a 
nominal resolution of 5.5 A. This data set contained 
44 600 measured reflections out of a total of 57 000 to 
the 5.5 A resolution limit. The missing data were 
mainly in deep 'pie slices' of unrecorded data resulting 
from incomplete coverage of reciprocal space by the 
precession geometry. 

Following phase refinement at 10 A resolution (Fig. 
1), data were successively added to the set, increasing 
the resolution in steps of 0.5 A. 

The addition of each shell of new data was initiated 
at the Fourier-inversion stage, by generating Fc(h) 
values for the data to be added. These 'new' F c values, 
invariably of low magnitude, were treated as 'unrecor- 
ded' reflections in the subsequent Fo(h) Fourier 
synthesis. That is, they were entered as F c values, not 
as F o values, to avoid imposing the full I f o l  magnitude 
on the presumably inaccurate ab initio phases. In the 
next cycle the I Fcl values of these reflections, now 
generally higher than in the preceding cycle, were 
replaced with I f  o I, provided of course that a measured 
value had been recorded for the reflection in question. 
At the end of the series several cycles of phase 
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40  ° 
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- .  ,. _ _ . / - . . / .  " ~._.,- • 

r - . . #  ' / , , /  /?': 
/ i  • 

/ .  
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837 2287 4116 6250 g639 Reflections 

Fig. 3. Phase difference between the best 10 A model, and the 
spherically averaged model (solid line), spherically averaged 
following seven cycles of phase refinement (broken line) and after 
eight cycles (dotted line). 

Table 1. Compar i son  o f  ab initio IFcl and  m e a s u r e d  
IF ol values  

Resolution Number of 
range (A) reflections R* iFclliFoi 

>15 167 0.19 1.04 
15.0-12.0 222 0.20 0.97 
12.0-10.0 510 0.17 1.00 
10.0- 9.0 571 0.22 1.06 
9.0- 8.0 980 0.25 1.06 
8.0- 7.0 1927 0.39 0.92 
7.0- 6.5 1748 0.46 0.90 
6.5- 6.0 2655 0.53 0.81 

*R =2 Y liFoi- iF<IIIX(IFol + IFcl). 

refinement were done at 5.5 A resolution, giving an R 
of 0.20 for the measured reflections. 

Subsequently, another native data set recorded by 
the oscillation method to 4 A resolution became 
available (Unge et al., 1980). This afforded an 
opportunity to compare the 'pie slice' I Fcl values of the 
5.5 A phase refinement with their I Fol values, 
heretofore unknown. Table 1 shows the results of this 
comparison following scaling of the two data sets based 
on reflections present as measured in both sets. The 
agreement is essentially perfect to about 8.4, resolution; 
the gradually worsening R value at higher resolution 
partly reflects a generally observed tendency of I Fcl 
values to be less than I Fol near the resolution limit. 

The combined data set to 4.0 A resolution contained 
148 158 reflections, of which 124 395 were measured. 
Starting at 7.0 A resolution (31 196 reflections, 30 436 
measured), we carried out a second series of phase 
refinement and stepwise phase extension. In this series 
the resolution limit for the Fourier-inversion generation 
of Fe(h) was increased by Z J ( S i n  2 0 / ~ .  2 )  = 0.00025 A -2 
per cycle. This introduced 2200 to 3500 new F c values 
per cycle. The I f c l  values of newly introduced 
reflections were employed in the F o synthesis for two 
consecutive refinement cycles; that is, measured ampli- 
tudes were employed only for reflections whose 
sin 2 0/~, 2 value was at least 0-00050 A -2 inside the 
current resolution limit. This phase extension and 
refinement progressed from 7.0 to 4.0 A resolution in 
42 cycles. At 4-0 A several cycles with all measured 
data gave a final R of 0.215. 

This phase-extension procedure may well have been 
unnecessarily cautious; in retrospect no indications 
were found to suggest that larger steps in sin 2 0/~, 2, i.e. 
fewer cycles, would have led to a different result. 

The phase changes in a ten-cycle sequence of phase 
refinement and extension from 5.3 to 4.6 A resolution 
are shown in Fig. 4. The phases for every other cycle 
are shown, relative to those of the last cycle in the 
sequence. The sharp rise at the high end of each curve 
reflects the uncertainty in the initial phases of the small, 
incipient Fc's. 
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Two likely contributing reasons for the relatively 
slow convergence of the phase refinement are the 
cycle-by-cycle updating of both the I Fcl values of 
unmeasured reflections and of the solvent correction. A 
speed-up feature was tested whereby the structure 
factors Ftc n) from the inversion of the symmetry- 
averaged map of cycle n were replaced by 

Fetn-') + k[Ftc n) -- Ften-')] 

with k > 1, when calculating input phases for the next 
cycle. The refinement progressed safely with values of k 
up to at least 1.5. In the refinements shown in Figs. 3 
and 4 k = 1 was used. 

The reliability of the phase extension is supported by 
the emergence of chemically interpretable features in 
the 4 A electron-density map, including subunit 
boundaries and other significant features of the tertiary 
structure of the coat protein (Strandberg et al., 1979; 
Unge et al., 1980). 

At 4.0 A resolution, with 148 158 reflections, a map 
interval of 1.30 A and a symmetry-grid step of 1.05 ,~, 
the symmetry-averaging computation requires 4.5 min 
on the Amdahl 470V/7 computer. At this map density 
the stored STNV asymmetric unit requires 2.06 Mbytes 
of memory, at one byte per map point. The total 
memory requirement of this step is 2.5 Mbytes. An 
entire refinement cycle requires 18.6 or 13.0 min CPU 
time depending on whether or not the separate 
nucleic-acid Fourier-inversion step is included. The 

,I = 0 (a). - (tO,° / / /  
30 ° 6 

20 * 

10 ~ 

' ' ' I ' ' ' ' I ' ') 
0.005 0.0 I0 sin ~ 8/,t 

Fig. 4. Phase changes in ten cycles of phase refinement and 
extension from (sin 0/2) 2 = 0.009 to 0.012. Phase differences 
between cycles labelled n = 0, 2 . . . . .  8 and cycle 10, locally 
averaged in intervals of (sin 0/2) 2 = 0.0005, are shown as 
functions of (sin 0/2) 2 . 

Fourier inversion and Fourier synthesis steps in the 
cycle (Ten Eyck, 1973) require 5.4 and 1.6 min of 
CPU time using buffered//O. 

The author is indebted to Bror Strandberg, Uppsala, 
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